Characterization of cis-regulatory elements controlling repo transcription in Drosophila melanogaster.
نویسندگان
چکیده
The glial cells missing (gcm) gene has been identified as a "master regulator" of glial cell fate in the fruit fly Drosophila. However, gcm is also expressed in and required for the development of larval macrophages and tendon cells. Thus, the Gcm protein activates the transcription of different sets of genes in different developmental contexts. How the Gcm protein regulates these different outcomes is not known. Our goal is to identify proteins that collaborate with Gcm to promote the transcriptional activation of Gcm target genes specifically in glial cells, or prevent their activation in the other tissues in which Gcm is expressed. To address this, we have focused on the transcriptional regulation of a well-characterized glial-specific Gcm target gene, the transcription factor reversed polarity (repo). We aim to understand how the transcription of the glial-specific Gcm target gene repo is regulated by Gcm and other factors. Previously we defined a 4.3 kb cis-regulatory DNA region that recapitulates the endogenous Repo expression pattern dependent on multiple Gcm binding sites. We proposed that there may be multiple cis-regulatory sub-regions that drive cell-specific expression independent of Gcm binding sites. Here, using lacZ reporter activity in transgenic lines, we have characterized three cis-regulatory elements: 1) a distal element that promotes expression in dorsolateral epidermis; 2) a repressor element that suppresses expression in the epidermis; and, 3) a proximal element that promotes expression in a subset of cell body glia. Most significantly, we have defined a minimal cis-regulatory element that recapitulates the endogenous repo expression pattern dependent on a single Gcm binding site.
منابع مشابه
Microevolution of cis-Regulatory Elements: An Example from the Pair-Rule Segmentation Gene fushi tarazu in the Drosophila melanogaster Subgroup
The importance of non-coding DNAs that control transcription is ever noticeable, but the characterization and analysis of the evolution of such DNAs presents challenges not found in the analysis of coding sequences. In this study of the cis-regulatory elements of the pair rule segmentation gene fushi tarazu (ftz) I report the DNA sequences of ftz's zebra element (promoter) and a region containi...
متن کاملDirect regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila.
The regulation of development by Hox proteins is important in the evolution of animal morphology, but how the regulatory sequences of Hox-regulated target genes function and evolve is unclear. To understand the regulatory organization and evolution of a Hox target gene, we have identified a wing-specific cis-regulatory element controlling the knot gene, which is expressed in the developing Dros...
متن کاملREDfly 2.0: an integrated database of cis-regulatory modules and transcription factor binding sites in Drosophila
The identification and study of the cis-regulatory elements that control gene expression are important areas of biological research, but few resources exist to facilitate large-scale bioinformatics studies of cis-regulation in metazoan species. Drosophila melanogaster, with its well-annotated genome, exceptional resources for comparative genomics and long history of experimental studies of tran...
متن کاملTranscriptional regulation of the Drosophila glial gene repo
reversed polarity (repo) is a putative target gene of glial cells missing (gcm), the primary regulator of glial cell fate in Drosophila. Transient expression of Gcm is followed by maintained expression of repo. Multiple Gcm binding sites are found in repo upstream DNA. However, while repo is expressed in Gcm positive glia, it is not expressed in Gcm positive hemocytes. These observations sugges...
متن کاملNomadic Enhancers: Tissue-Specific cis-Regulatory Elements of yellow Have Divergent Genomic Positions among Drosophila Species
cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 492 1 شماره
صفحات -
تاریخ انتشار 2012